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Solution of Matrix Equations Using Sparse Techniques

by Majdi Baddourah, (majdi@sunny.larc.nasa.gov or 804-864-2913)

The solution of large systems of matrix equations is key to the solution a
large number of scientific and engineering problems.

Tradition has it that iterative methods persist for CFD and direct methods
for Structures spplications. With the increase in computational power
(over 3 orders of magnitude this decade) problem sizes with full detail
that could not have even been considered tractable are now solved
routinely. The equation solvers used for structures applications have
advanced from the use of full matrix (LINPACK, LAPACK BLAS-3) to band
solvers to variable band and skyline solvers to sparse matrix solvers with
corresponding increases in performance. It appears that for large-scale
structural analysis applications sparse matrix methods have a significant
performance advantage over other methods This talk will describe the
latest sparse matrix solver developed at Langley which if not the fastest
in the world is among the best. It can routinely solve in excess of
263,000 equations in 40 seconds on one Cray C-90 processor.

Dr. Majdi Baddourah received the Ph D. in the Department of Civil
Engineering at Old Dominion ‘University in 1991. He has been employed by
Lockheed Engineering and Sciences Company since then in support of the
Computational Structures Branch at NASA Langley Research Center. Dr.
Baddourah is widely recognized for contributing to the development of
software to exploit scalable high-performance computers for structural
analysis applications including the solution of large systems of equations
(approaching 1 million) by both direct and iterative methods.
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"Facftoring' Matrix

* Banded or full:
— easy to vectorize,
— problem size limit.

* General sparse:
~ difficult to vectarize.
— fewer operations,
- indirect addressing.

Results

* High Speed Civil Transport
* Space Station

* CFD Application
Automotive Application
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Mach 2.4 HSCT Results

* Only V88 solves 172,400 equation
HSCT on Convex C240

Mach 2.4 HSCT
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* Using 1 Cray Y-MP processor
and Solid State Disk at NAS
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Conclusion

Sparse solvers are preferred for large-scale
structures.

Sparse Solver outperforms iterative solver which can
have convegence problems. ‘ '

Sparse Solver can be used for CFD applications
Sparse solvers uses minimum memory.
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